SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE TITLE: Applied Mechanics

CODE NO.: MCH110 SEMESTER: THREE

PROGRAM: Mechanical Engineering Technology

Mechanical Engineering Technician - Manufacturing,

Mechanical Techniques – Industrial Maintenance (Millwright)

and Machine Shop

AUTHOR: Mark Seeler

DATE: September PREVIOUS OUTLINE September

2011 **DATED**: 2010

APPROVED: "Corey Meunier"

CHAIR DATE

TOTAL CREDITS: FOUR

PREREQUISITE(S): Nil

HOURS/WEEK: 4 hours per week

Copyright ©2011 The Sault College of Applied Arts & Technology

Reproduction of this document by any means, in whole or in part, without prior written permission of Sault College of Applied Arts & Technology is prohibited.

For additional information, please contact Corey Meunier, Chair School of Technology & Skilled Trades

(705) 759-2554, Ext. 2610

2 Applied Mechanics MCH110

I. **COURSE DESCRIPTION:**

The intention of this course is to introduce the student to a number of fundamental concepts of 'statics' which will prove useful to the mechanical technology student. The fundamental concepts are very important as they form the basis for other courses in technology such as dynamics, strength of materials and mechanics of fluids.

Every effort will be made not to dwell on the theory of these concepts but to instead stress practical applications through the extensive use of problem solving and the presentation of the solutions in a style consistent with standard engineering practice.

1. INTRODUCTION

- a. Illustrate with a sketch of a right-angled triangle the accepted method of labeling both the sides and the angles of this triangle.
- b. Recall the six trigonometric functions and apply these to simple right-angled triangle problems to solve for the lengths of unknown sides or the magnitude of unknown angles.
- c. Apply the basic principle know as the *Pythagorean Theorem*.
- d. Recall both the sine law and the cosine law and apply these to the solution of triangles which are non-right-angled. Show how the cosine law is related to the Pythagorean Theorem.
- e. Recall the relationships that exist by way of conversion factors between the S.I. metric and the Imperial system of units for quantities such as length, mass, weight and force. Convert between systems of units using the method of multiplying by ratios equal to one.

2. **VECTOR ANALYSIS**

- a. Define what is meant by a scalar quantity and list at least a dozen examples of scalar quantities.
- b. Define what is meant by a *vector quantity* and list seven examples of vector quantities.
- c. List the various types of forces along with their characteristics and the commonly used units for forces both in the S.I. metric and the Imperial system of units.
- d. Describe what is meant by the *resultant* of a system of forces.
- e. Describe what is meant by the equilibrant of a system of forces.
- f. Using the method known as the *parallelogram method*, determine the resultant of two vector quantities using both a graphical and a mathematical approach.
- g. Using the method known as the string polygon method, determine the resultant of two or more vector quantities using a graphical approach.

h. Given a vector quantity superimposed onto an x-, y-coordinate plane, resolve the vector into its two *orthogonal components*, namely its *x-component* and its *y-component*.

3

i. Determine the *resultant* of two or more vector quantities by the analytical method known as the *method of components*.

3. MOMENTS AND COUPLES

- a. Define what is meant by the *moment* or *torque* of a force about a given point of rotation.
- b. Write the equation for determining the *moment* or *torque* of a force about a given point of rotation.
- c. Calculate the *moment* of a force by:
 - i. Multiplying the *total force* by its *perpendicular distance to the point of rotation*;
 - ii. Multiplying each of the force's components by their respective perpendicular distances to the point of rotation.
- d. Determine the *resultant moment* for a system *of moments*.
- e. Name the three factors that together constitute what is known as a 'couple'.
- f. Calculate the *moment* of a given *couple*.
- g. Replace a given *couple* with an equivalent *couple* at a different location.
- h. Analyze the effects of *couples* on a body.

4. EQUILIBRIUM OF FORCES IN TWO DIMENSIONS

- a. Write the 3 equations that represent the three requirements that must be met for a body to be in a state of 'static equilibrium'.
- b. Explain what is meant by a 'free body diagram'.
- c. List the assumptions or conventions that one must employ when drawing *free body diagrams* and replacing supports with equivalent supporting forces.
- d. Construct a *free body diagram* for parts or the whole of given mechanisms or structures.
- e. Differentiate between 'externally applied loads' and 'internal reactions'.
- f. Apply the *three conditions of equilibrium* to *free body diagrams* and determine the reactions.
- g. Describe what is meant by a 'two force member' and explain the implications for a free body diagram involving such members.
- h. Apply the principles of equilibrium to the solution of problems involving static systems of pulleys.
- i. Describe what is meant by and solve problems involving 'coplanar concurrent force systems'.

- j. Explain the difference between what is known as a 'concentrated load' and what is known as a 'distributed load'.
- k. Describe what is meant by and solve problems involving 'coplanar parallel force systems' including both uniform and non-uniform beam loading.
- I. Describe what is meant by and solve problems involving 'coplanar, non-concurrent force systems'.

5. STRUCTURES AND MEMBERS

- a. Recognize the difference between the forces of 'tension' and 'Compression' in structural members such as struts and ties.
- b. Differentiate between the structures known as '*trusses*' and those known as '*frames*'.
- c. Identify 'members that carry no load' in trusses and frames. Appreciate the importance of identifying such members in the solution of internal forces in structural members such as trusses and frames.
- d. Describe what is meant by a 'two-force member' and list the implications that this type of member has on the solution of forces in members of trusses and frames.
- e. Describe what is meant by and list the assumptions that apply to, what is known as a 'pin connection' in a truss or a frame.
- f. Using the method known as the 'Method of Joints', determine the loads in individual members of coplanar pin-connected trusses and frames being certain to identify whether the members are in tension or compression.
- g. Using the method known as the 'Method of Sections' determine the forces in selected members of a truss being certain to identify whether the members are in tension or compression. This will require the drawing of a free body diagram of a 'partial truss' that is part of the entire truss.
- h. Describe what is meant by a 'three-force member' and identify clearly the difference between this type of member and the previously used 'two-force member'.

6. STRUCTURES AND MECHANISMS IN THREE DIMENSIONS

- a. Explain what is meant by 'isometric sketching' and use isometric sketching to aid in visualizing forces acting on mechanisms in three dimensions.
- b. Construct 'isometric *free body diagrams*' of the whole, or parts of, three dimensional mechanisms.
- c. Apply the six basic equations of three dimensional equilibrium,

$$\Sigma F_x = 0$$
, $\Sigma F_y = 0$, $\Sigma F_z = 0$, $\Sigma M_x = 0$, $\Sigma M_y = 0$, $\Sigma M_z = 0$

to the three-dimensional systems of:

- i. Parallel forces.
- ii. Concurrent forces, &

5

iii. Nonconcurrent forces

7. THE LAWS OF FRICTION

- a. Write the characteristics that pertain to the force known as the 'friction force'.
- b. Sketch the graph of the *friction force* versus the *applied force* when a force is applied to a block, initially at rest, on a horizontal, flat surface. The *applied force* starts at zero and increases gradually up to and beyond the point where the block begins to slide.
- c. Indicate clearly the two distinct regions of the graph drawn above, namely, the 'static region' and the 'kinetic region'.
- d. Explain what is meant by the 'coefficient of friction'.
- e. Write the equation for the 'coefficient of static friction'.
- f. Write the equation for the 'coefficient of kinetic friction'.
- g. Explain what is meant by the 'angle of friction'.
- h. Write the equation for the 'angle of friction' in terms of the 'maximum force of static friction' and the 'normal reaction force' between the object and the surface upon which it rests.
- i. Solve a variety of problems involving friction. These problems will include those that require the student to determine whether motion is impending or not. Also, solve those problems that require the student to determine whether tipping or sliding will occur.
- 8. CENTROIDS AND CENTERS OF GRAVITY IN TWO DIMENSIONS Note: This topic has been moved to MCH103, Strength of Materials

III. TOPICS:

1. INTRODUCTION

- Mathematics of Mechanics
- Conversions of Units

2. VECTOR ANALYSIS

- Vector and Scalar Quantities
- Forces, Resultants and Equilibrants of force systems

3. MOMENTS AND COUPLES

4. EQUILIBRIUM OF FORCES IN TWO DIMENSIONS

Applied Mechanics MCH110

• The Three Conditions of Equilibrium

5. <u>STRUCTURES AND MEMBERS</u>

• Force Analysis of Structures using the 'Method of Joints', the 'Method of Sections'.

6. <u>STRUCTURES AND MECHANISMS IN THREE DIMENSIONS</u>

7. THE LAWS OF FRICTION

- Coefficients of Static and Kinetic Friction
- Impending Motion
- Sliding versus Tipping Motion

IV. REQUIRED RESOURCES/TEXTS/MATERIALS:

Keith M. Walker, APPLIED MECHANICS FOR ENGINEERING

TECHNOLOGY, 8th 2008 ed. Prentice-Hall Publishers

ISBN: 978-0-13-172151-7

V. EVALUATION PROCESS/GRADING SYSTEM:

Class participation (includes <u>attendance</u> and <u>unannounced</u> quizzes) – 20% Assignments – 30%

Test #1 - 25%

Test #2 - 25%

The following semester grades will be assigned to students:

Grade	Definition	Grade Point Equivalent
A+ A	90 – 100% 80 – 89%	4.00
В	70 - 79%	3.00
С	60 - 69%	2.00
D	50 – 59%	1.00
F (Fail)	49% and below	0.00
CR (Credit)	Credit for diploma requirements has been awarded.	
S	Satisfactory achievement in field /clinical placement or non-graded subject area.	
U	Unsatisfactory achievement in field/clinical placement or non-graded	

Applied Mechanics MCH110

subject area.

X A temporary grade limited to situations with extenuating circumstances giving a

student additional time to complete the

requirements for a course.

NR Grade not reported to Registrar's office. W Student has withdrawn from the course

without academic penalty.

VI. SPECIAL NOTES:

Attendance:

Sault College is committed to student success. There is a direct correlation between academic performance and class attendance; therefore, for the benefit of all its constituents, all students are encouraged to attend all of their scheduled learning and evaluation sessions. This implies arriving on time and remaining for the duration of the scheduled session.

VII. COURSE OUTLINE ADDENDUM:

The provisions contained in the addendum located on the portal form part of this course outline.